Abstract

Highly concentrated electrolytes based on Li-salts and chelating solvents, such as glymes, are promising as electrolytes for lithium batteries. This is due to their unique properties, such as higher electrochemical stabilities, compliance with high-voltage electrodes, low volatility and flammability, and inertness toward aluminum current collector corrosion. The nature of these properties originates from the molecular-level structure created in either solvate ionic liquids (SILs) or the less common ionic aggregates by disproportionation reactions. The nature of the anion plays a crucial role, and here, we present a computational study using TFSI and TDI anions as probes, revealing increasing differences upon increased salt concentration. TFSI-based electrolytes preferably form SILs, while TDI-based electrolytes form ionic aggregates. The latter lead to an unexpected creation of "free" cationic species even at (very) high salt concentrations and thus promise of ample lithium ion transport.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.