Abstract

Efficient transcription elongation by RNA polymerase I (Pol I) requires a specific Pol I-associated factor, termed TIF-IC. Here we show that TFIIS, a factor that has previously been shown to promote read-through past many types of blocks to elongation by RNA polymerase II, also enhances Pol I-directed transcription elongation. In a reconstituted transcription system containing purified proteins, TFIIS stimulates Pol I transcription by increasing the overall rate of RNA chain elongation. As with Pol II, ternary Pol I complexes cleave the 3' end of the nascent transcripts in response to TFIIS. The truncated RNAs remain bound to the template, are subject to pyrophosphorolysis, and can be chased into longer transcripts. Moreover, we show by immunoprecipitation and specific affinity chromatography that TFIIS physically interacts with Pol I. The results suggest that nascent transcript cleavage by TFIIS or a TFIIS-related factor may be a general mechanism by which both Pol I and Pol II can bypass transcriptional impediments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call