Abstract

BackgroundInference of causal regulators responsible for gene expression changes under different conditions is of great importance but remains rather challenging. To date, most approaches use direct binding targets of transcription factors (TFs) to associate TFs with expression profiles. However, the low overlap between binding targets of a TF and the affected genes of the TF knockout limits the power of those methods.ResultsWe developed a TF-centered downstream gene set enrichment analysis approach to identify potential causal regulators responsible for expression changes. We constructed hierarchical and multi-layer regulation models to derive possible downstream gene sets of a TF using not only TF-DNA interactions, but also, for the first time, post-translational modifications (PTM) information. We verified our method in one expression dataset of large-scale TF knockout and another dataset involving both TF knockout and TF overexpression. Compared with the flat model using TF-DNA interactions alone, our method correctly identified five more actual perturbed TFs in large-scale TF knockout data and six more perturbed TFs in overexpression data. Potential regulatory pathways downstream of three perturbed regulators— SNF1, AFT1 and SUT1 —were given to demonstrate the power of multilayer regulation models integrating TF-DNA interactions and PTM information. Additionally, our method successfully identified known important TFs and inferred some novel potential TFs involved in the transition from fermentative to glycerol-based respiratory growth and in the pheromone response. Downstream regulation pathways of SUT1 and AFT1 were also supported by the mRNA and/or phosphorylation changes of their mediating TFs and/or “modulator” proteins.ConclusionsThe results suggest that in addition to direct transcription, indirect transcription and post-translational regulation are also responsible for the effects of TFs perturbation, especially for TFs overexpression. Many TFs inferred by our method are supported by literature. Multiple TF regulation models could lead to new hypotheses for future experiments. Our method provides a valuable framework for analyzing gene expression data to identify causal regulators in the context of TF-DNA interactions and PTM information.

Highlights

  • Inference of causal regulators responsible for gene expression changes under different conditions is of great importance but remains rather challenging

  • Tu et al [16] and Sutras et al [17] integrated transcription factors (TFs)-DNA interactions and protein-protein interactions to map which gene among expression quantitative trait loci was the causal factor responsible for the observed changes in the downstream gene expression

  • The results suggest that in addition to direct transcription, indirect transcription and post-translational modifications (PTM) are responsible for the downstream effects of TFs perturbation, especially for TFs overexpression

Read more

Summary

Introduction

Inference of causal regulators responsible for gene expression changes under different conditions is of great importance but remains rather challenging. The low overlap between binding targets of a TF and the affected genes of the TF knockout limits the power of those methods. Several researchers have strived to infer regulatory pathways connecting the known causal perturbation to the affected genes using physical interaction networks [12,13,14,15]. These inferred pathways could explain consequences of perturbations such as gene knockout effects. The power of such kind of approach relies greatly on the size and quality of cause-and-effect relationships, which are often hard to collect

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call