Abstract

Two classes of replication intermediates have been observed from mitochondrial DNA (mtDNA) in many mammalian tissue and cells with two-dimensional agarose gel electrophoresis. One is assigned to leading-strand synthesis in the absence of synchronous lagging-strand synthesis (strand-asynchronous replication), and the other has properties of coupled leading- and lagging-strand synthesis (strand-coupled replication). While strand-asynchronous replication is primed by long noncoding RNA synthesized from a defined transcription initiation site, little is known about the commencement of strand-coupled replication. To investigate it, we attempted to abolish strand-asynchronous replication in cultured human cybrid cells by knocking out the components of the transcription initiation complexes, mitochondrial transcription factor B2 (TFB2M/mtTFB2) and mitochondrial RNA polymerase (POLRMT/mtRNAP). Unexpectedly, removal of either protein resulted in complete mtDNA loss, demonstrating for the first time that TFB2M and POLRMT are indispensable for the maintenance of human mtDNA. Moreover, a lack of TFB2M could not be compensated for by mitochondrial transcription factor B1 (TFB1M/mtTFB1). These findings indicate that TFB2M and POLRMT are crucial for the priming of not only strand-asynchronous but also strand-coupled replication, providing deeper insights into the molecular basis of mtDNA replication initiation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call