Abstract
BackgroundLung cancer is the most common cancer in the world. High Mobility Group AT-Hook 1 (HMGA1) is found to be associated with the glycolytic pathway in a variety of cancers, and abnormal glycolysis function is one of the important characteristics of cancer cells. Therefore, this paper discusses the effect of HMGA1 on glycolysis of lung adenocarcinoma (LUAD) cells MethodsThe mRNA expression data were downloaded from TCGA-LUAD database. Groups were set according to the median expression of HMGA1, followed by GSEA enrichment analysis. The upstream transcriptional regulators of HMGA1 were predicted by bioinformatics. The correlation between HMGA1 and Transcription Factor AP-2 Alpha (TFAP2A) and their expression in LUAD tissues were analyzed as well. mRNA expression levels of HMGA1 and TFAP2A were detected by qRT-PCR. The binding of HMGA1 and TFAP2A was demonstrated by ChIP and dual luciferase reporter assays. Cell function experiments were utilized to assay proliferation, apoptosis, glycolysis ability of LUAD cells, and glycolysis-related protein expression in each treatment group. ResultsHMGA1 was highly expressed in LUAD patients’ tissues and enriched in the glycolytic pathway. Additionally, silencing HMGA1 markedly hampered cell proliferation and glycolysis, and promoted cell apoptosis. The upstream transcriptional regulator TFAP2A was predicted to be highly expressed in LUAD. ChIP and dual luciferase reporter assays confirmed the targeted relationship between HMGA1 and TFAP2A. Cell rescue assay confirmed that TFAP2A promoted glycolysis and LUAD progression by activating HMGA1. ConclusionTFAP2A promotes glycolysis, proliferation and hampers apoptosis of LUAD cells by stimulating HMGA1. Hence, TFAP2A/HMGA1 may be a feasible therapeutic target for LUAD. Availability of data and materialsAll the data within this manuscript could be gotten from corresponding author at reasonable request.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.