Abstract

Underwater wireless sensor networks play an important role in exploring the oceans as part of an integrated space–air–ground–ocean network. Because underwater energy is limited, the equipment’s efficiency is significantly impacted by the battery duration. Underwater backscatter technology does not require batteries and has significant potential in positioning, navigation, communication, and sensing due to its passive characteristics. However, underwater backscatter signals are susceptible to being swamped by the excitation signal. Additionally, the signals from different reflection signals share the same frequency and overlap, and contain fewer useful features, leading to significant challenges in detection. In order to solve the above problems, this paper proposes a recurrent neural network that introduces time-frequency and reference signal features for underwater backscatter signal separation (TF-REF-RNN). In the feature extraction part, we design an encoder that introduces time-frequency domain features to learn more about the frequency details. Additionally, to improve performance, we designed a separator that incorporates the reference signal’s pure global information features. The proposed TF-REF-RNN network model achieves metrics of 28.55 dB SI-SNRi and 19.51 dB SDRi in the dataset that includes shipsEar noise data and underwater simulated backscatter signals, outperforming similar classical methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.