Abstract

Mung bean is gaining attention as a sustainable and economic source of plant protein. The current study evaluates the techno-functionality, anti-nutrient properties, in vivo protein quality and toxicity of texturized mung bean protein (TMBP) produced under optimized conditions. Our work successfully produces TMBP with improved techno-functionalities that are crucial for meat-based food applications, credited to retained juiciness and fat-binding ability. Alkaline extraction and extrusion significantly reduce trypsin inhibitor, phytic acid and tannin content in TMBP. An in vivo study using Sprague-Dawley rats reveals the good protein quality of TMBP, with a true protein digestibility of 99.26% resembling casein (99.36%, control protein), a net protein utilization of 63.99% and a biological value of 64.46%. The good protein quality, increased lean muscle mass along with reduced cholesterol and triglyceride secures TMBP's potential as a Protein meal replacer and dietary suplement. Non-toxicity of TMBP is confirmed by normal serum biochemical parameters and healthy organs, ascertaining the safety of alkaline extraction. The current study elucidates the production of TMBP with improved techno-functionalities (for meat-based food applications), reduced anti-nutritional factors and high quality (for weight-watchers and malnourished individuals).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.