Abstract
Surface texturing of silicon can reduce the reflectance of incident light and hence increase the conversion efficiency of solar cells. Comparatively lesser concentrated (10%) standard alkaline (NaOH/KOH) solution does not give good textured multi-crystalline silicon (mc-Si) surface, which could give satisfactory open-circuit voltage. This is due to grain-boundary delineation with steps formed between successive grains of different orientations. In this work an attempt has been made to obtain a well-textured mc-Si surface through three different approaches. The first two are with two different types of acid solutions and the third with concentrated alkaline NaOH. Solutions of HF–HNO 3–CH 3COOH/H 2O system with different concentrations of HF and HNO 3 were used for texturing. The results on the effect of texturing of these three solutions on the surface morphology of very large area (125 mm×125 mm) mc-Si wafer as well as on the performance parameters of solar cell are presented in this paper. Attempts have been made to study extensively the surface morphologies of mc-Si wafers in two effective regions of the isoetch curves of the HF:HNO 3:diluent's system. Also we studied the reflectance, uniformity, spectral response, short-circuit current, open-circuit voltage, fill factor and dark current–voltage of the cells fabricated using wafers textured with the three different methods. Short-circuit current of the solar cells fabricated using acid-textured wafers were measured to be in the range of 4.93 A. This value is 0.37 and 0.14 A higher than the short-circuit current values measured in the cells fabricated with isotextured and alkaline-textured wafers, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.