Abstract

Laser Surface Texturing (LST) is widely used to modify hard material surfaces improving their physic-chemical and mechanical properties. This technology is particularly relevant for tungsten carbides, a material that requires high complexity methods when other micro-machining processes are used. LST allows innovative cutting tool designs that improve the machining behavior and enlarge the cutting tool lifetime.This research analyses the influence of LST parameters on the track dimensions, roughness, microstructure, hardness, and lubricant retention ability of the modified surfaces. Twelve combinations of energy density of pulse and scanning speed created different geometrical patterns on WC-Co surfaces. LST parameters were related to specific shape and dimensions of the linear grooves. Energy density was proven as the most influential parameter for dimensional characteristics and roughness values. Specific channel morphologies increased the lubricant expansion area up to 50%, leading the lubricant to a linear track direction. Low scanning speed and high energy density also increased the surface hardness up to 20%. The surface composition was also modified. The thermal effect of the laser treatments and the non-protective atmosphere increased the oxygen on the surface and modified the WC-Co microstructure. However, the thermal affected zone is considerably low compared to other texturing processes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call