Abstract

AbstractSr2Nb2O7 (SNO) ceramics are promising high‐temperature piezoelectric materials due to their high Curie temperature (TC), good thermal stability, and high electrical resistivity. However, SNO presents low piezoelectric activity (d33 < 1 pC/N). Here, we successfully obtain textured SNO ceramics with an orientation factor of 0.86 by microstructure regulation. Saturated polarization‐electric loop was obtained in textured ceramic with remanent polarization Pr∼3.56 µC/cm2 and coercive field EC∼53.4 kV/cm. The piezoelectric coefficient d33 of the textured SNO ceramics is increased to 3.2 pC/N, with a high TC of 1342°C, while the low‐textured SNO ceramics exhibit no effective d33. Meanwhile, the piezoelectric coefficient d33 of textured SNO ceramics maintains consistency even at 1300°C, showing excellent thermal stability. The underlying mechanism driving this improvement is elucidated, emphasizing the facilitated domain‐wall motion enabled by the engineered microstructure. Furthermore, textured SNO ceramics exhibit high resistivity of 1.33 × 106 Ω⋅cm at 800°C. This study presents a simple and feasible microstructure engineering approach to enhance the piezoelectric properties of layer‐structured materials, offering valuable insights into the design and development of ceramics for diverse applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.