Abstract

AbstractExpanding thermal plasma (ETP) deposited silicon nitride (SiN) with optical properties suited for the use as antireflection coating (ARC) on silicon solar cells has been used as passivation layer on textured monocrystalline silicon wafers. The surface passivation behavior of these high‐rate (>5 nm/s) deposited SiN films has been investigated for single layer passivation schemes and for thermal SiO2/SiN stack systems before and after a thermal treatment that is normally used for contact‐firing. It is shown that as‐deposited ETP SiN used as a single passivation layer almost matches the performance of a thermal oxide. Furthermore, the SiN passivation behavior improves after a contact‐firing step, while the thermal oxide passivation degrades which makes ETP SiN a better alternative for single passivation layer schemes in combination with a contact‐firing step. Moreover, using the ETP SiN as a part of a thermal SiO2/SiN stack proves to be the best alternative by realizing very low dark saturation current densities of <20 fA/cm2 on textured solar‐grade FZ silicon wafers and this is further improved to <10 fA/cm2 after the anneal step. Optical and electrical film characterizations have also been carried out on these SiN layers in order to study the behavior of the SiN before and after the thermal treatment. Copyright © 2008 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.