Abstract

SummaryOil production in the Permian Basin gives rise to large volumes of produced water contaminated by silt, emulsified oil, and additives used for enhanced oil recovery. There is intense interest in the design of membrane modules as sustainable alternatives for produced water treatment to enable the reuse of produced water for agricultural applications, injection into aquifers, and redeployment in oil recovery. Here, we report a hierarchically textured cement-based membrane exhibiting orthogonal wettability, specifically, superhydrophilic and underwater superoleophobic characteristics. The in situ formation of ettringite needles accompanied by embedding of glass spheres imbues multiscale texturation to stainless-steel mesh membranes, enabling the separation of silt and oil from produced water at high flux rates (1600 L h−1۰m−2, at ca. 2.7 bar). Oil concentration is reduced as low as 1 ppb with an overall separation efficiency of 99.7% in single-pass filtration. The membranes show outstanding mechanical resilience and retention of performance across multiple cycles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.