Abstract

Computer-aided detection of lung fibrosis remains a difficult task due to the small vascular structures, scars, and fibrotic tissues that need to be identified and differentiated. In this paper, we present a texture-based computer-aided diagnosis (CAD) system that automatically detects lung fibrosis. Our system uses high-resolution computed tomography (HRCT), advanced texture analysis, and support vector machine (SVM) committees to automatically and accurately detect lung fibrosis. Our CAD system follows a five-stage pipeline that is comprised of: segmentation, texture analysis, training, classification, and display . Since the accuracy of the proposed texture-based CAD system depends on how precise we can distinguish texture dissimilarities between normal and abnormal lungs, in this paper we have given special attention to the texture block selection process. We present the effects that texture block size, data reduction techniques, and image smoothing filters have within the overall classification results. Furthermore, a histogram-based technique to refine the classification results inside texture blocks is presented. The proposed texture-based CAD system to detect lung fibrosis has been trained with several normal and abnormal HRCT studies and has been tested with the original training dataset as well as new HRCT studies. On average, when using the suggested/default texture size and an optimized SVM committee system, a 90% accuracy has been observed with the proposed texture-based CAD system to detect lung fibrosis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.