Abstract

To determine the feasibility of texture analysis for the classification of liver cysts and hemangiomas, on nonenhanced, zero-fill interpolated T1- and T2-weighted MR images. Forty-five patients (26 women and 19 men; mean age, 58.1 +/- 16.9 years) with liver cysts or hemangiomas were enrolled in the study. After exclusion of images with artifacts, T1-weighted images of 42 patients, and T2-weighted images of 39 patients, obtained at 3.0 Tesla (T), were available for further analysis. Texture features derived from the gray-level histogram, co-occurrence and run-length matrix, gradient, autoregressive model, and wavelet transform were calculated. Fisher, probability of classification error and average correlation (POE+ACC), and mutual information coefficients were used to extract subsets of optimized texture features. Linear discriminant analysis (LDA) in combination with k nearest neighbor (k-NN) classification, and k-means clustering, were used for lesion classification. LDA/k-NN produced misclassification rates of 16-18% on T1-weighted, and 12-18% on T2-weighted images. K-means clustering yielded misclassification rates of 15-23% on T1-weighted, and 15-25% on T2-weighted images. Texture-based classification of liver cysts and hemangiomas is feasible on zero-fill interpolated MR images obtained at 3.0T. Further studies are warranted to investigate the value of texture-based classification of other liver lesions, such as hepatocellular and cholangiocellular carcinoma, on MRI.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.