Abstract

We use a multilevel dominant eigenvector estimation algorithm to develop a new run-length texture feature extraction algorithm that preserves much of the texture information in run-length matrices and significantly improves image classification accuracy over traditional run-length techniques. The advantage of this approach is demonstrated experimentally by the classification of two texture data sets. Comparisons with other methods demonstrate that the run-length matrices contain great discriminatory information and that a good method of extracting such information is of paramount importance to successful classification.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.