Abstract

The transmission of thermal neutrons through an object is affected by the microstructure and crystallographic texture of the composing material. As a result, the total neutron cross section of common metallic objects departs largely from that expected for polycrystalline materials without preferred orientation. In this work we present the wavelength dependence of the total cross section of different Zr-based components of nuclear reactors, such as pressure tubes, rolled plates and welds. The experimental values found for the total cross section are discussed in terms of the crystallographic texture that results from the component manufacturing. The discussion is based on energy-resolved radiographies taken at the ISIS Facility, UK, using a novel micro-channel plate detector; and theoretical calculations of the elastic coherent total cross section from the orientation distribution function (ODF) of the crystallites composing a sample. The connection existing between texture and neutron transmission is exploited to investigate the spatial variation of texture across Zr-based components.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.