Abstract
Detection of masses in digital mammograms may helps in an early diagnosis of breast cancer. In this paper, we proposed method to detect high probability of mass areas based on texture feature analysis. Firstly, an automated segmentation of region of interests (ROIs) is done using 8-bit quantization technique. Then, Gray Level Co occurrence Matrices (GLCM) at four directions is constructed for each ROIs. This is due to the fact that the Gray Level Co occurrence Matrices (GLCM) may provide the texture-context information. The results prove that the Gray Level Co occurrence Matrices(GLCM) at 0°, 45°, 90° and 135° with a block size of 8×8 give significant texture information to identify between masses and non-masses tissues.KeywordsDigital MammogramMassesGLCMTexture analysis
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.