Abstract

We present a method of introducing rotation invariance in texture features based on a local Fourier histogram (LFH) computed using a 1-D discrete Fourier transform (DFT). To compensate for image rotation, a local image-gradient angle at each image pixel is found from within one of the 1-D DFT coefficients. The rotation invariance is established theoretically, analytically as well as empirically. The rotation-compensated features extracted from the same texture image oriented at different angles exhibit very high cross correlation. Therefore, the proposed texture features are expected to yield very high accuracies for a variety of image data and applications. The improved LFH-based features outperform the earlier version of the features and the features based on Gabor filters in texture recognition on 8560 images from the Brodatz album.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.