Abstract
The optimization of magnetic and physical properties of electrical steel is imperative for many engineering applications. The key factors to improve magnetic properties are the steel composition as well as control of the crystallographic orientation and microstructure of the steel during processing. However, this requires careful control of processing at all stages of production. Under certain conditions of deformation and annealing, electrical steel can be produced to have favourable texture components. For grain-oriented (GO) electrical steels that are used in most transformer cores, a pronounced {110} <001> Goss texture plays a vital role to achieve low power losses and high permeability. Essentially, Goss texture develops during secondary re-crystallization in GO electrical steels; however, the mechanism of the abnormal Goss grain growth is still disputed in the literature. In the current study, the influence of the annealing conditions on the development of annealing, cold rolling and re-crystallization textures of hot-rolled GO electrical steel were investigated in detail following each processing step. Furthermore, the orientation data from electron backscatter diffraction were used to evaluate the orientation-dependent stored energy of deformed grains after hot rolling. In the light of new findings in the present study, annealing and deformation texture development mechanisms were critically reviewed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.