Abstract
Experimental characterization and polycrystal modeling of texture evolution in pure copper during equal channel angular extrusion (ECAE) via routes B C (1, 2, 4, 8 and 16 passes) and C (1–4 passes) are conducted. Rigorous analysis of bulk textures measured by neutron diffraction is performed for the two routes. Textures in route B C show orientation concentrations along fibers that consist of the {1 1 1} θ and 〈1 1 0〉 θ partial fibers, yet the locations and orientation densities of the main texture components vary significantly with pass number. For route C, the first pass texture is retained in subsequent passes, apart from slight variations in the strengths of the main texture components. Quantitatively good texture predictions for all passes in route B C and odd-numbered passes in route C are obtained using a viscoplastic self-consistent model with a grain co-rotation scheme and a simple shear deformation history though they are further improved when the deformation is provided by finite element (FE) simulations. For the even-numbered passes in route C, however, the simple shear deformation is not sufficient; the complex and inhomogeneous deformation captured by FE simulations is important for reproducing the retained shear texture. Regardless of the deformation history used, the full constraints Taylor model is shown to be insufficient for texture predictions in multi-pass ECAE.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.