Abstract
Intermediate annealing treatment produces different effects on the state of particles in Al–Mg–Si alloy sheets, thereby affecting their recrystallization textures and formability. To improve the formability of the sheets, the effects of different intermediate annealing temperatures on the texture evolution and mechanical properties of these sheets for automotive applications were studied using optical microscope (OM), scanning electron microscope (SEM) and tensile tests. The results reveal that intermediate annealing temperature has a significant influence on the recrystallization textures and average plastic strain ratio (r). After solution treatment, all the alloy sheets possess similar recrystallization texture components comprising of cubeND {100} and P {011} orientations, whereas a characteristic strong cube-oriented {100} texture is observed only in the alloy annealed at a temperature of 380 °C. However, in comparison with the alloy not annealed, and the alloy annealed at 550 °C, the alloy annealed at 380 °C possesses a lower average r value. Furthermore, the relationship between textures and r value was analyzed by using the Taylor full constraints model in this study.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.