Abstract

AimsA fast, non-invasive and observer-independent method to analyze the homogeneity and maturity of human pluripotent stem cell (hPSC) derived retinal pigment epithelial (RPE) cells is warranted to assess the suitability of hPSC-RPE cells for implantation or in vitro use. The aim of this work was to develop and validate methods to create ensembles of state-of-the-art texture descriptors and to provide a robust classification tool to separate three different maturation stages of RPE cells by using phase contrast microscopy images. The same methods were also validated on a wide variety of biological image classification problems, such as histological or virus image classification.MethodsFor image classification we used different texture descriptors, descriptor ensembles and preprocessing techniques. Also, three new methods were tested. The first approach was an ensemble of preprocessing methods, to create an additional set of images. The second was the region-based approach, where saliency detection and wavelet decomposition divide each image in two different regions, from which features were extracted through different descriptors. The third method was an ensemble of Binarized Statistical Image Features, based on different sizes and thresholds. A Support Vector Machine (SVM) was trained for each descriptor histogram and the set of SVMs combined by sum rule. The accuracy of the computer vision tool was verified in classifying the hPSC-RPE cell maturation level.Dataset and ResultsThe RPE dataset contains 1862 subwindows from 195 phase contrast images. The final descriptor ensemble outperformed the most recent stand-alone texture descriptors, obtaining, for the RPE dataset, an area under ROC curve (AUC) of 86.49% with the 10-fold cross validation and 91.98% with the leave-one-image-out protocol. The generality of the three proposed approaches was ascertained with 10 more biological image datasets, obtaining an average AUC greater than 97%.ConclusionsHere we showed that the developed ensembles of texture descriptors are able to classify the RPE cell maturation stage. Moreover, we proved that preprocessing and region-based decomposition improves many descriptors’ accuracy in biological dataset classification. Finally, we built the first public dataset of stem cell-derived RPE cells, which is publicly available to the scientific community for classification studies. The proposed tool is available at https://www.dei.unipd.it/node/2357 and the RPE dataset at http://www.biomeditech.fi/data/RPE_dataset/. Both are available at https://figshare.com/s/d6fb591f1beb4f8efa6f.

Highlights

  • The retinal pigment epithelial (RPE) cells reside in the back of the eye between the photoreceptor cells and choroid

  • We built the first public dataset of stem cell-derived RPE cells, which is publicly available to the scientific community for classification studies

  • The chosen performance indicator was the area under the ROC curve (AUC) as it is more reliable than accuracy

Read more

Summary

Introduction

The retinal pigment epithelial (RPE) cells reside in the back of the eye between the photoreceptor cells and choroid. The morphology changes during maturation [4]: from the elongated, so called “fusiform morphology”, of immature RPE; via “epithelioid morphology” i.e. rounder but still without pigmentation (after one to two weeks of culture); to “cobblestone morphology” (approximately after a month) when the cells have condensed and become heavily pigmented [4]. This phenomenon can be seen both in primary RPE [4] and in human pluripotent stem cells (hPSC) derived RPE cell maturation [5]. A manual approach was chosen, where two observers subjectively classified the cell pigmentation levels and an objective pigmentation measurement was inferred from the Photoshop's Info Palette for a set of manuallyselected points

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call