Abstract
Early and accurate diagnosis of Alzheimer's Disease (AD) is critical since early treatment effectively slows the progression of the disease thereby adding productive years to those afflicted by this disease. A major problem encountered in the classification of MRI for the automatic diagnosis of AD is the so-called curse-of-dimensionality, which is a consequence of the high dimensionality of MRI feature vectors and the low number of training patterns available in most MRI datasets relevant to AD. A method for performing early diagnosis of AD is proposed that combines a set of SVMs trained on different texture descriptors (which reduce dimensionality) extracted from slices of Magnetic Resonance Image (MRI) with a set of SVMs trained on markers built from the voxels of MRIs. The dimension of the voxel-based features is reduced by using different feature selection algorithms, each of which trains a separate SVM. These two sets of SVMs are then combined by weighted-sum rule for a final decision. Experimental results show that 2D texture descriptors improve the performance of state-of-the-art voxel-based methods. The evaluation of our system on the four ADNI datasets demonstrates the efficacy of the proposed ensemble and demonstrates a contribution to the accurate prediction of AD. Ensembles of texture descriptors combine partially uncorrelated information with respect to standard approaches based on voxels, feature selection, and classification by SVM. In other words, the fusion of a system based on voxels and an ensemble of texture descriptors enhances the performance of voxel-based approaches.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.