Abstract

One of the most difficult scenarios for unsupervised segmentation of moving objects is found in nighttime videos where the main challenges are the poor illumination conditions resulting in low-visibility of objects, very strong lights, surface-reflected light, a great variance of light intensity, sudden illumination changes, hard shadows, camouflaged objects, and noise. This paper proposes a novel method, coined COLBMOG (COLlinearity Boosted MOG), devised specifically for the foreground segmentation in nighttime videos, that shows the ability to overcome some of the limitations of state-of-the-art methods and still perform well in daytime scenarios. It is a texture-based classification method, using local texture modeling, complemented by a color-based classification method. The local texture at the pixel neighborhood is modeled as an N-dimensional vector. For a given pixel, the classification is based on the collinearity between this feature in the input frame and the reference background frame. For this purpose, a multimodal temporal model of the collinearity between texture vectors of background pixels is maintained. COLBMOG was objectively evaluated using the ChangeDetection.net (CDnet) 2014, Night Videos category, benchmark. COLBMOG ranks first among all the unsupervised methods. A detailed analysis of the results revealed the superior performance of the proposed method compared to the best performing state-of-the-art methods in this category, particularly evident in the presence of the most complex situations where all the algorithms tend to fail.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.