Abstract

Gradient-based texture analysis methods have become popular in computer vision and image processing and has many applications including medical image analysis. This motivates us to develop a texture feature extraction method to discriminate Amyotrophic Lateral Sclerosis (ALS) patients from controls. But, the lack of data in ALS research is a major constraint and can be mitigated by using data from multiple centers. However, multi-center data gives some other challenges such as differing scanner parameters and variation in intensity of the medical images, which motivate the development of the proposed method.To investigate these challenges, we propose a gradient-based texture feature extraction method called Modified Co-occurrence Histograms of Oriented Gradients (M-CoHOG) to extract texture features from 2D Magnetic Resonance Images (MRI). We also propose a new feature-normalization technique before feeding the normalized M-CoHOG features into an ensemble of classifiers, which can accommodate for variation of data from different centers.ALS datasets from four different centers are used in the experiments. We analyze the classification accuracy of single center data as well as that arising from multiple centers. It is observed that the extracted texture features from downsampled images are more significant in distinguishing between patients and controls. Moreover, using an ensemble of classifiers shows improvement in classification accuracy over a single classifier in multi-center data. The proposed method outperforms the state-of-the-art methods by a significant margin.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call