Abstract
Machine learning techniques has emerged as a potential field in many of present day agricultural applications. One of these applications is the identification and classification of leaf diseases. In this paper, a triangular based and OTSU based methods are applied for segmentation, Textural features primarily based on GLCM are obtained for these segmented images using k-means clustering technique, further classification of different leaf disease is performed using an SVM based classification. The proposed method resulted in an overall classification accuracy of 70% using the triangular based segmentation with an AUC of 0.63.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Engineering and Advanced Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.