Abstract

In this study, polycrystalline hafnium nitride (HfN) thin films were grown by oblique angle deposition (OAD) technique to investigate the relationship between column tilt angle, texture development and residual stress evolution with varying inclination angle α of the substrate. The films (~1 μm thickness) were grown at various angles (α = 5°, 25°, 35°, 65°, 75°, and 85°) with respect to the substrate normal by reactive magnetron sputtering at 0.3 Pa and 300 °C. The film morphology, crystal structure and residual stress state were characterized by scanning electron microscopy and X-ray diffraction (XRD), including pole figure and sin2ψ measurements. All HfN films had a cubic, NaCl-type crystal structure with an [111] out-of-plane orientation and exhibited a biaxial texture for α ≥ 35°. XRD pole figures reveal that the crystal habit of the grains consists of {100} facets constituting triangular-base pyramids, with a side and a corner facing the projection of the incoming particle flux (indicative of a double in-plane alignment). A columnar microstructure was formed for α ≥ 35°, with typical column widths of 100 nm. It is observed that the column tilt angle β increases monotonously for α ≥ 35°, reaching β = 34° at α = 85°. This variation at microscopic scale is correlated with the tilt angle of the (111) crystallographic planes, changing from −24.8 to 11.3° with respect to the substrate surface. The residual stress changes from strongly compressive (~−5 GPa at α = 5°) to negligible or slightly tensile for α ≥ 35°. The observed trends are compared to previous works of the literature and discussed based on existing crystal growth and stress models, as well as in light of energy and angular distribution of the incident particle flux calculated by Monte Carlo. Importantly, a decrease of the average kinetic energy of Hf particles from 22.4 to 17.7 eV is found with increasing α due to an increase number of collisions.

Highlights

  • The physical vapor deposition of thin films at off-normal conditions is a simple and effective way to engineer the growth morphology of the films on the micro- and nano-scale and entail specific physical properties [1]

  • Cross-sectional scanning electron microscopy (SEM) imaging of the fractured surfaces clearly attests of the formation of tilted columnar morphology for the hafnium nitride (HfN) films deposited at α ≥ 35◦

  • Studies on the stress evolution in thin films deposited at off-normal conditions remain scarce ethas al. [8]

Read more

Summary

Introduction

The physical vapor deposition of thin films at off-normal conditions is a simple and effective way to engineer the growth morphology of the films on the micro- and nano-scale and entail specific physical properties [1]. These techniques, known as oblique angle deposition (OAD) or glancing angle deposition (GLAD) when the substrate faces the incoming vapor flux at shallow angles, have become popular over the last decades [2,3,4]. Combining oblique angle geometries and sputter-deposition technique provides additional degree of freedom to adjust the film morphological features (porosity and column tilt angle) and stoichiometry by varying the deposition pressure or target power [7,8,9,10,11] and employing more than one material source [12,13,14,15]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call