Abstract
The influence of different film textures on the electronic properties of polycrystalline Cu(In,Ga)Se2 absorbers is studied by measuring the laterally resolved optoelectronic properties of differently textured Cu(In,Ga)Se2 films with Kelvin probe force microscopy and cathodoluminescence. The grain boundaries in (112)- and (220/204)-textured films behave differently. The work-function profile measured with the Kelvin probe across a grain boundary in (112)-textured films shows a dip indicating positive charges at the grain boundaries. In panchromatic cathodoluminescence mappings in a transmission electron microscope, such grain boundaries appear dark, i.e. the strongly reduced luminescence indicates that the grain boundaries represent strong non-radiative recombination centers. In contrast, grain boundaries in (220/204)-textured films give rise to a dip or a step in the work function indicating slightly negative charge or neutrality. Cathodoluminescence is reduced at such grain boundaries, but less dramatically than in the (112)-textured case. However, when Na is present in the (220/204)-textured films, the grain boundaries are almost invisible in cathodoluminescence mappings. This strong passivating action of Na occurs only in the (220/204)-textured films, due to a particular grain-boundary population. In (112)-textured films and films without pronounced texture, this passivation effect is much less noticeable.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.