Abstract
Texture classification is a challenging and important problem in image analysis. graphical models (GM) are promising tools for texture analysis. In this paper, we address the problem of learning the structure of Gaussian graphical models (GGM) for texture models. GGM can be considered as regression problems due to the connection between the local Markov properties and conditional regression of a Gaussian random variable. We utilize L1-penalty regularization technique for appropriate neighborhood selection and parameter estimation simultaneously. The proposed algorithms are applied in texture synthesis and classification. Experimental results on Brodatz textures demonstrate that the proposed algorithms have good performance and prospects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Wavelets, Multiresolution and Information Processing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.