Abstract

We demonstrate a method for differentiating tissue disease states using the intrinsic texture properties of speckle in optical coherence tomography (OCT) images of normal and tumor tissues obtained in vivo. This approach fits a gamma distribution function to the nonlog-compressed OCT image intensities, thus allowing differentiation of normal and tumor tissues in an ME-180 human cervical cancer mouse xenograft model. Quantitative speckle intensity distribution analysis thus shows promise for identifying tissue pathologies, with potential for early cancer detection in vivo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.