Abstract
We report new occurrences of “two-phase” granitic textures from the Western Krusne hory/Erzgebirge pluton (central Europe) and use crystal-size distribution data and thermodynamic modeling to interpret their crystallization conditions. The two-phase texture consists of (1) early phenocrysts of quartz, plagioclase, K-feldspar and biotite, (2) medium-grained matrix of the same phases and (3) interstitial channels and patches of a late-stage, very fine-grained matrix. The porphyritic two-mica microgranites, which host two-phase textures, occur as minor intrusions in early low-F biotite granites or as marginal parts of evolved high-F Li-mica granites. Measurements of the crystal-size distribution of quartz revealed three grain populations: (1) early phenocrysts (0.5–3.0 mm) showing partial resorption by residual melt, (2) a medium-grained population of the equigranular rock matrix (0.05–0.50 mm) that experienced minor coarsening by subsolidus annealing and (3) a fine-grained population (<0.03 mm) in the interstitial channels and patches formed during rapid devolatilization; this quartz group shows no or poor grain coarsening. All samples exhibit similar fraction of the fine-grained population (44–52%) but proportions of phenocrysts to medium-grained matrix vary significantly. Thermodynamic modeling of liquidus equilibria and experimental data in the hydrous haplogranite system require: (1) ascent of a granitic suspension (15–25% phenocrysts) under H2O-undersaturated conditions at 25–45 bar/°C and a cooling rate of 40 J/(g kbar) in order to produce partial resorption of quartz phenocrysts and continued growth of feldspar phenocrysts, followed by (2) emplacement as discrete intrusions or bodies along pluton roof accompanied by sudden devolatilization. At the onset of matrix nucleation, disequilibrium undercooling of 70–85°C was inferred from the presence of micrographic intergrowths of quartz and K-feldspar. The two-phase granites in the Western Krusne hory/Erzgebirge pluton and in the Southeast Asian batholith form compositionally narrow groups with high-silica and moderate volatile enrichments but they differ in peraluminosity and phosphorus concentrations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.