Abstract

The current work makes integrated value-added, geological and chemical studies on the texturally intricate banded iron formation “BIF” that is represented here, as a case in point, by the Um Nar BIF located in the Central Eastern Desert of Egypt. Geologically, the Um Nar BIF is composed mainly of oxide-rich facies and silicate-rich facies mostly expressed as bands of variable thickness (90–730 µm). Magnetite, martite, goethite, and quartz are detected as the main components of the oxide-rich facies, while epidote, stilpnomelane, and garnet occupy the other facies type. The studied ore can be classified as a low-grade iron ore containing 51.23 wt.% Fe2O3 and 39.64 wt.% SiO2 along with considerable phosphorous content (1.01 wt.% P2O5). These elemental concentrations do not match the recommended benchmarks for iron and steelmaking (e.g.75.78–95.8 wt.% Fe2O3, 5–7 wt.% SiO2, and 0.04 wt.% P2O5). Moreover, the studied BIF has a poor liberation behavior on crushing and grinding due to the complex interlocking of magnetite with quartz and stilpnomelane expressed as a sieve-like texture. This textural complication directed the current work to investigate the potential exploitation of the Um Nar BIF as a precursor of nano-magnetite that is commonly synthesized by ferrous and ferric chlorides. Accordingly, HCl-based agitation leaching followed by co-precipitation was carried out, resulting in ultrafine mesoporous nano-magnetite (2.47–4.27 nm particle size, 120 m2g−1 surface area, 0.55 cm3g−1 pore volume, and 4.88 nm pore diameter) expected to serve in water treatment as an effective adsorbent for heavy metals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call