Abstract

Silica alcogels were synthetized by the sol–gel polymerization of tetraethylorthosilicate in acid media. Conventional and supercritical drying was performed in order to obtain xerogels and aerogels. Different process parameters of the supercritical drying were altered in order to control the texture of the resulting gel. The texture and the structural evolution of xero- and aerogels were studied by thermogravimetric-differential thermal analysis, Fourier-transform infrared spectroscopy, transmission electron microscopy and N 2 physisorption at 77 K. 29Si magic angle spinning nuclear magnetic resonance experiments on silica samples were used to resolve various silicon local environments. Hydrophilic microporous xerogels and hydrophobic micro- or mesoporous silica aerogels were obtained, whose microscopic structure is very similar. However, the samples obtained by different drying procedures exhibit a different structural evolution with temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.