Abstract

This work presents the results of a study on textural and microstructural inhomogeneities that develop during annealing of heavily drawn Oxygen free high conducting (OFHC) copper wire. The wire was drawn at room temperature to a true strain of 2.31 and isothermally annealed at 750°C for annealing times ranging from 10s to 1hr. The inhomogeneity of microstructure across the wire was clearly visible as three distinct concentric regions, which were classified as: the inner core, the mid section, and the outer surface. Two texture transitions were observed. At shorter annealing time, recrystallization which originated from the mid section, resulted into a strong<100>+weak<111> duplex fiber texture. However, prolonged annealing gave rise to abnormal grain-growth that proceed from the mid section to the outer surfaces with a dominant <111> fiber component at the mid and inner region, and mixed components of <111>, <100>, and <112> at the outer surfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.