Abstract

The Zhongdian region in northwestern Yunnan (SW China) hosts a number of important porphyry and skarn deposits. In this study, we integrate petrographic observations, SEM-EDS elemental mapping, EPMA and LA-ICP-MS geochemical analyses on magnetite from several key deposits in the region. Magnetite grains from the Pulang porphyry Cu-Au, Lannitang porphyry Au-Cu, Langdu Cu skarn, Disuga porphyry, and andesite of Tumugou Formation were analyzed to unravel the magnetite formation mechanism, and the relative oxygen fugacity of the porphyry/skarn ore-related hydrothermal fluids in this region.Two types of magnetites (Magnetite I and II) have been identified. Magnetite I is commonly distributed in the chlorite and/or sericite alteration zone(s). Magnetite I grains are characterized by being textually inhomogeneous. The Magnetite I core (with local ilmenite exsolution lamellae) is Ti-Cr rich, indicative of a dominantly igneous origin. The Magnetite I core and its surrounding primary igneous minerals (biotite, amphibole and plagioclase) underwent late alteration. Magnetite I grains are characterized by core-rim texture, sharp core-rim contact, and irregular grain boundaries. These textural features indicate that Magnetite I may have undergone dissolution-reprecipitation processes, during which the Magnetite I core was chemically purified via losing Ti and gaining Fe. Magnetite II (in potassic and sericite alteration zones) is textually homogeneous with relatively low contents of Ti, Mg, Al, V, Ni, and Mn. We suggest that Magnetite II was formed by hydrothermal alteration. Compared to Magnetite II grains from the Pulang and Langdu deposits, those from the Lannitang deposit have lower Mn and V but higher Sn contents, indicative of higher oxygen fugacity of the hydrothermal fluids. We propose that binary plots such as Ti vs. Sc, V vs. Sn and Ga vs. Sn can distinguish the different origins of magnetites.From an exploration perspective, Magnetite II from the altered Disuga porphyries has similar texture and composition to its counterpart from the potassic-altered Pulang porphyries. This, together with the presence of Cu-sulfide inclusions in the Disuga Magnetite I, suggests significant mineralization potential in these porphyries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.