Abstract

Prostate cancer is one of the most common cancers in the world. Due to the ageing of society and the extended life of the population, early diagnosis is a great challenge for healthcare. Unfortunately, the currently available diagnostic methods, in which magnetic resonance imaging (MRI) using the PIRADS protocol plays an increasingly important role, are imperfect, mostly in the inability to visualise small cancer foci and misinterpretation of the imagery data. Therefore, there is a great need to improve the methods currently applied and look for even better ones for the early detection of prostate cancer. In the presented research, anonymised MRI scans of 92 patients with evaluation in the PIRADS protocol were selected from the data routinely scanned for prostate cancer. Suspicious tissues were depicted manually under medical supervision. The texture features in the marked regions were calculated using the qMaZda software. The multiple-instance learning approach based on the SVM classifier allowed recognising between healthy and ill prostate tissue. The best F1 score equal to 0.77 with a very high recall equal to 0.70 and precision equal to 0.85 was recorded for the texture features describing the central zone. The research showed that the use of texture analysis in prostate MRI may allow for automation of the assessment of PIRADS scores.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call