Abstract
AbstractWearable smart electronic devices based on wireless systems use batteries as a power source. However, recent miniaturization and various functions have increased energy consumption, resulting in problems such as reduction of use time and frequent charging. These factors hinder the development of wearable electronic devices. In order to solve this energy problem, research studies on triboelectric nanogenerators (TENGs) are conducted based on the coupling of contact‐electrification and electrostatic induction effects for harvesting the vast amounts of biomechanical energy generated from wearer movement. The development of TENGs that use a variety of structures and materials based on the textile platform is reviewed, including the basic components of fibers, yarns, and fabrics made using various weaving and knitting techniques. These textile‐based TENGs are lightweight, flexible, highly stretchable, and wearable, so that they can effectively harvest biomechanical energy without interference with human motion, and can be used as activity sensors to monitor human motion. Also, the main application of wearable self‐powered systems is demonstrated and the directions of future development of textile‐based TENG for harvesting biomechanical energy presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.