Abstract

Wearable multiaxes motion tracking with inductive sensors and machine learning is presented. The production, characterization, and use of a modular and size‐adjustable inductive sensor for kinematic motion tracking are introduced. The sensor is highly stable and able to track high‐frequency (>15 Hz) and high strain rates (>450% s−1). Four sensors are used to fabricate a pair of motion capture shorts. A random forest machine learning algorithm is used to predict the sagittal, transverse, and frontal hip joint angle, using the raw signals from sport shorts during running with a cohort of 12 participants against a gold standard optical motion capture system to an accuracy as high as R2 = 0.98 and root mean squared error of 2° in all three planes. Herein, an alternative strain sensor is provided to those typically used (piezoresistive/capacitive) for soft wearable motion capture devices with distinct advantages that can find applications in smart wearable devices, robotics, or direct integration into textiles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.