Abstract

In this paper, results on the construction of a new flat textile-based UV light dosimeter are reported. As a textile support polyamide woven fabric was chosen, which was surface-modified with 2,3,5-triphenyltetrazolium chloride (TTC). At first, spectrophotometric and dynamic laser light scattering results on the steady-state UV irradiation of aqueous TTC solutions in the presence of oxygen are discussed. If irradiated, TTC converts to the corresponding formazan molecules of red colour. The size and size distribution of the particles is related to the absorbed radiation and pH of the solution. When TTC molecules reside on polyamide textile, UV irradiation causes a colour change from white to deep red. The tinge intensity depends on the absorbed energy per unit surface area. On this basis, the calibration parameters of the detectors, such as dose sensitivity, dose range, quasi-linear dose range, were calculated. Furthermore, the improvement of the dosimeters’ resistance to atmospheric conditions was achieved and assessed through washing fastness tests. Finally, the detectors were proved to be adequate for measurements of the 2D distribution of absorbed UV energy. A simple method of UV dose distribution measurements was proposed. The textile-based systems show promise as dosimeters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.