Abstract
ABSTRACT The research on mycelium-based biocomposites is increasing exponentially, due to their ability to be produced from renewable and sustainable substrates. In this sense, the present investigation explores the ability of Pleurotus ostreatus to grow on textile residues and form mycelium-based biocomposites. The mycelium was able to grow on four types of textile residues including white and coloured cotton and polyester mixtures and acted as a binder between the textile fibres. The growth of fungal mycelium was assessed using Fourier transform infrared spectroscopy to detect the presence of amides and polysaccharides arising from fungal mycelium and scanning electron microscopy, dry weight and water activity. The compressive strength of textile residue-based biocomposite was also measured and it was found to be between 100 and 270 kPa. Overall, a lightweight biocomposite was obtained which could be a potential alternative for polystyrene-based products. These findings show the ability of the fungus to thrive on polyester plastic in textiles and provide an alternative for converting this plastic material into bio-based materials. Additionally, by varying the mycelium growth, the plasticiser and stiffness properties of the resultant biocomposite can be changed. This research paves the way for the efficient conversion of textile waste into biocomposites as alternatives for plastic packaging products.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.