Abstract

AbstractThe successful structural verification of basement walls under earth pressure loading with light imposed loading is often difficult. This situation is often encountered for external basement walls under terrace doors, stairs, masonry light wells etc., where the theoretically necessary imposed loading is missing. This makes it impossible to resist the acting bending forces from earth pressure using a vertical arch model. In such cases, the earth pressure has to be resisted in a horizontal direction. Since however the bending moment capacity of unreinforced masonry parallel to the bed joint is low, another possibility is to use a textile‐reinforced bed joint with longitudinal fibres of alkali‐resistant glass or carbon fibre. With an appropriately adapted textile reinforcement in the bed joints, the masonry can fulfil the requirements for load‐bearing capacity against earth pressure with horizontal load transfer, even under a small imposed load. Textile reinforcement has the advantage above all of corrosion resistance compared to conventional steel reinforcement, and textiles can also be inserted into thin bed joints. The Chair of Structural Design in the Faculty of Architecture of the TU Dresden is currently carrying out extensive numerical and experimental studies for this purpose. The objective is to develop an optimal configuration of material and textile form for use as bed joint reinforcement. The investigations are concentrating on the tension strength, bonding and durability of the composite material ”textile mortar“. This report should give a brief overview of the state of the work in the currently running research project.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call