Abstract

An upflow anaerobic sludge bed (UASB)-submerged aerated biofilter (SAB) system that treats effluents from a jeans factory was evaluated. The 210-day operational period was divided into three phases (PI, PII and PIII), each with a different hydraulic retention time (HRT in h) and organic loading rate (OLR in kg COD/m3.d). In PI, the best performance was achieved using the UASB (HRT 24, OLR 1.3) with COD and color removal efficiencies of 59 and 64%, respectively; the corresponding values were 77 and 86% for the final effluent. In PII, the efficiencies were 50 and 55% using the UASB (HRT 16, OLR 1.2), respectively, and 69 and 81% for the final system effluent, respectively. In PIII, the UASB (HRT 12 and ORL 3.2) showed the poorest performance; the efficiencies decreased to 48 and 50%, respectively. The same phenomenon occurred in the system with corresponding efficiencies decreasing to 69 and 61%. Throughout the experiment, the system removal efficiencies were between 57 and 88% for nitrogen and between 14 and 63% for sulfate. The final effluent showed relatively non-toxicity or moderate toxicity using Daphnia magna as an indicator. Therefore, the overall results showed that the use of a sequential anaerobic-aerobic system is promising for treatment of textile industrial wastewater.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call