Abstract
Natural Language Processing has improved tremendously with the success of Deep Learning. Neural Machine Translation (NMT) has arisen as the most powerful with the power of Deep Learning. The same idea has been recently applied to source code. Code Generation (CG) is the task of generating source code from natural language input. This paper introduces a Python parallel corpus of natural language intent and source code pairs. It also proposes a Code Generation model based on Transformer architecture used for NMT by using code tokenization and code embeddings on the custom parallel corpus. The proposed architecture achieved a good BLEU score of 32.4 and Rouge-L of 82.1, which is on par with natural language translation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.