Abstract

Text summarizing (TS) takes key information from a source text and condenses it for the user while retaining the primary material. When it comes to text summaries, the most difficult problem is to provide broad topic coverage and diversity in a single summary. Overall, text summarization addresses the fundamental need to distill large volumes of information into more manageable and digestible forms, making it a crucial technology in the era of information abundance. It benefits individuals, businesses, researchers, and various other stakeholders by enhancing efficiency and comprehension in dealing with textual data. In this paper, proposed a novel Modified Generative adversarial network (MGAN) for summarize the text. The proposed model involves three stages namely pre-processing, Extractive summarization, and summary generation. In the first Phase, the Text similarity dataset is pre-processed using Lowering Casing, Tokenization, Lemmatization, and, Stop Word Removal. In the second Phase, the Extractive summarization is done in three steps Generating similarity metrics, Sentence Ranking, and Sentence Extractive. In the third stage, a generative adversarial network (GAN) employs summary generation to jointly train the discriminative model D and the generative model G. To classify texts and annotate their syntax, Generative Model G employs a convolutional neural network called Bidirectional Gated Recursive Unit (CNN-BiGRU). The performance analysis of the proposed MGAN is calculated based on the parameters like accuracy, specificity, Recall, and Precision metrics. The proposed MGAN achieves an accuracy range of 99%. The result shows that the proposed MGAN improves the overall accuracy better than 9%, 6.5% and 5.4% is DRM, LSTM, and CNN respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.