Abstract

In this paper we investigate some properties and algorithms related to a text sparsification technique based on the identification of local maxima in the given string. As the number of local maxima depends on the order assigned to the alphabet symbols, we first consider the case in which the order can be chosen in an arbitrary way. We show that looking for an order that minimizes the number of local maxima in the given text string is an NP-hard problem. Then, we consider the case in which the order is fixed a priori. Even though the order is not necessarily optimal, we can exploit the property that the average number of local maxima induced by the order in an arbitrary text is approximately one third of the text length. In particular, we describe how to iterate the process of selecting the local maxima by one or more iterations, so as to obtain a sparsified text. We show how to use this technique to filter the access to unstructured texts, which appear to have no natural division in words. Finally, we experimentally show that our approach can be successfully used in order to create a space efficient index for searching sufficiently long patterns in a DNA sequence as quickly as a full index.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.