Abstract

We propose an equivalence of the partition functions of two different 3d gauge theories. On one side of the correspondence we consider the partition function of 3d SL(2,R) Chern-Simons theory on a 3-manifold, obtained as a punctured Riemann surface times an interval. On the other side we have a partition function of a 3d N=2 superconformal field theory on S^3, which is realized as a duality domain wall in a 4d gauge theory on S^4. We sketch the proof of this conjecture using connections with quantum Liouville theory and quantum Teichmuller theory, and study in detail the example of the once-punctured torus. Motivated by these results we advocate a direct Chern-Simons interpretation of the ingredients of (a generalization of) the Alday-Gaiotto-Tachikawa relation. We also comment on M5-brane realizations as well as on possible generalizations of our proposals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.