Abstract
The research of text similarity, especially for rumor texts, which constructed the calculation model by known rumors and calculated its similarity. From which, people can recognize the rumor in advance, and improve their vigilance to effectively block and control rumors dissemination. Based on the Bayesian network, the similarity calculation model of microblog rumor texts was built. At the same time, taking into account not only the rumor texts have similar characters, but also the rumor producers have similar characters, and therefore the similarity calculation model of rumor texts makers was constructed. Then, the similarity between the text and the user was integrated, and the microblog similarity calculation model was established. Finally, also experimentally studied the performance of the proposed model on the microblog rumor text and the user data set. The experimental results indicated that the similarity algorithm proposed in this paper could be used to identify the rumors of texts and predict the characters of users more accurately and effectively
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The International Arab Journal of Information Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.