Abstract

The paper provides a practical solution to a real-time text/shape differentiation problem for online handwriting input. The proposed structure of the classification system comprises stroke grouping and stroke classification blocks. A new set of features is derived that has low computational complexity. The method achieves 98.5 % text/shape classification accuracy on a benchmark dataset. The proposed stroke grouping machine learning approach improves classification robustness in relation to different input styles. In contrast to the threshold-based techniques, this grouping adaptation enhances the overall discriminating accuracy of the text/shape recognition system by 11.3 %. The solution improves system's response on a touch-screen device.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.