Abstract
Text sentiment tendency analysis is a hot task in natural language processing. And text as the essential expression form of language, both individual word information, and overall utterance, deserves to be focused on. This paper proposes a fusion model to achieve high precision text sentiment analysis. This model combines the advantages of CNN to extract local information of text and BiLSTM to extract contextual association of text and introduces the attention mechanism to increase the focus on words with a solid emotional tendency in the text. The training datasets are comments that crawled from several social media sites such as Facebook, Twitter, Instagram, WhatsApp, etc. Based on the attention mechanism, this paper investigates the semantic sentiment analysis to reach the study of classification prediction for analyzing the positive and negative sentiment of financial news, social media, etc. The experimental results show that the proposed method can better extract features from the text and classify them than other baseline models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.