Abstract

ABSTRACT The paper is developing a new statistical approach to automatic partitioning of texts into parts belonging to different authors. It is based on the analysis of processes that counts the number of different words forward and backward. The theoretical study of the processes is based on the assumptions of an elementary probability model with a change point. We prove consistence of our statistical estimate of the point of concatenation in the case when the concatenated texts have different Zipf exponents. This method is being tested on the Brown corpus and also on newspaper texts in different languages. Testing shows a good estimate of the concatenation point. This method can be used in parallel with other text segmentation methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.